
Microsoft and Apple Training

API Apps for web, mobile and logic

apps

“microservices”

About Me…

 Michaël Van Wesemael

 Trainer @ U2U in

– Web Development (ASP.NET, MVC)

– Windows Phone, Windows Store apps

– Azure

 Contact me: michael@u2u.be

 Twitter PiekenPuil

 http://blogs.u2u.be/michael

 “Putting the punk back

into punctuality”

mailto:michael@u2u.be
http://blogs.u2u.be/michael

Agenda

 App Services & microservices

 What is an API app ?

 Creating an API app

 Exposing metadata with Swagger

 Deployment

 Creating an API Client

 Logic Apps

 Adding API Apps to logic apps

 Authentication

App Services

 Single Service combining
– Azure Web Apps

– Azure Mobile Apps

– Azure API apps

– Azure Logic apps

 Grouped in Resource Groups

 “MicroServices” : the microservice architectural style is an
approach to developing a single application as a suite of
small services, each running in its own process and
communicating with lightweight mechanisms (M.Fowler)

API Apps

 The API Apps Service provides a rich platform for

building, consuming and distributing APIs

 Choice of technology

– ASP.NET, Java, PHP, Node.js, Python

 Simple Access Control

 Easy consumption through SDK generation

 Integrates with SaaS applications (O365, Dropbox,

Twitter, Facebook,…) and Logic Apps

 Apps can be added or downloaded from marketplaces

 Auto-installation of dependencies

Creating an API Apps

 Create a brand new API app

 Or convert an existing one

Creating an API App

 2 files are needed for deploying to Azure:

DeploymentInfo

Definition how the app

will appear in Azure

API metadata

 Metadata is contained in apiapp.json
Name Description

Id Must be unique per namespace

Namespace Default is microsoft.com

Gateway Gateway-version. Gateways are used for a.o. authentication

Categories Category for marketplace

Copyright Copyright notice

… …
{

"$schema": "http://.../apiapp.json#",
"id": "U2UCoursesAPI",
"namespace": "microsoft.com",
"gateway": "2015-01-14",
"version": "1.0.0",
"title": "U2UCoursesAPI",
"summary": "",
"author": "",
"endpoints": {

"apiDefinition": "/swagger/docs/v1",
"status": null

}
}

Demo

Microsoft and Apple Training

Deploying you API app

 Just call “Publish” on your project

Deploying your API App

 Check your app in the portal

Demo

Microsoft and Apple Training

Swag apps with Swagger

 API Apps can use Swagger for testing and describing

your api

– http://swagger.io/

 Swagger-configuration done by

App_Start/SwaggerConfig

 Many settings are possible through this configuration

– E.g. : allow Swagger Testing UI by uncommenting

EnableSwaggerUI

– Add testing-url to your app (/swagger)

http://swagger.io/

Swag apps with Swagger

Demo

Microsoft and Apple Training

Creating an API Client

 Call “Add Azure API Client” from within your project

 Client Code is generated based on Swagger metadata

Creating an API Client

 Adds Several files to your client application based on

Swagger-exposed metadata

 After that, coding is easy…
var client = new U2UCoursesAPI();

var courses = client.Courses.GetCourses();
foreach (var item in courses)
{

Console.WriteLine(item.CourseCode);
}

Creating an API Client

 Swagger CodeGen allows you to create Clients SDK in

different languages

 API Apps can be clients of other API Apps (fits in the

Microservice idea)

Demo

Microsoft and Apple Training

Add Authentication

 API Apps have accessibility settings

– Public (anonymous) - Anyone can call the API app

– Public (authenticated) - Only authenticated users are allowed

to call the API app from outside the resource group

– Internal - Only other API apps in the same resource group are

allowed to call the API app

 All requests go through a Gateway defined on

resourcegroup! Gateway chooses identityprovider. Same

for all API’s in resourcegroup

Add Authentication

 Add authentication on API App properties

Add Authentication

 Specify IdentityProvider on Gateway-properties

Add Authentication

 Authentication depends on the chosen identity provider

– You need to register an app in facebook, twitter, AAD,…

– This gives you an App ID and App secret

– Needed on gateway

Demo

Microsoft and Apple Training

Add Authentication - AAD

 Add an application to AAD (“Application that my

organization is developing”)

Add Authentication

 Copy the URL’s from your app’s blade into AAD.

 Copy the ApplicationID to your blade

Add authentication

 Access your api app  HTTP 403 Forbidden

 Go to the login-url of the gateway

– http://gatewayurl/login/providername

– Providername :

 aad

 google

 facebook

 twitter

 microsoftaccount

 Login -> Get the x-zumo-auth header from the response

http://gatewayurl/login/providername

Add authentication

 Use the x-zumo-auth header when calling your api

 API Client will have easy way of doing this. (not yet in

preview)

Demo

Microsoft and Apple Training

Logic Apps

 Platform as a service (PaaS)

 Allows to automate business processes by visually

designing workflows in the browser

 Made by combining API apps and connectors

 Define when your process needs to run with triggers

 Use Biztalk functionality for more complex workflows

Creating Logic Apps

 Creating Connectors

– Connectors are API apps, available in the marketplace

Creating Logic Apps

 Create Your Logic App in the browser

Creating logic apps

 Add triggers and actions

 E.g. : start the flow when a tweet about U2UTraining is

detected, or start every hour, or …

Creating logic apps

 Connect API apps together for creating a functional

whole

 E.g. : Every hour check for tweets and mail them

Demo

Microsoft and Apple Training

Using your API Apps

 Your own API Apps can be used, like the others.

 Just add them in your Logic App

 Additional Coding is needed if you want to use them as

triggers in Logic apps

API App triggers

 Comparable to events

 Allows clients of API apps to respond

 Exposes the API app to Logic Apps

 Two types of triggers

– Poll Triggers : Client polls the API app for notification of an event

having been fired

– Push Triggers : Client is notified by the API app when an event

fires

Poll Triggers

 Add a GET method that will be called regularly
[HttpGet]
[Route("api/triggers/weatherchanged")]
public HttpResponseMessage WeatherChangedTrigger(string triggerstate,

string location)
{

//Check if weather changed since timestamp in triggerState for location
var hasChanged = true;
if (hasChanged)
{

return Request.EventTriggered(new { info = "Sunny" },
DateTime.UtcNow.ToString(), TimeSpan.FromHours(2));
}
return Request.EventWaitPoll(TimeSpan.FromHours(1),
DateTime.UtcNow.ToString());

}

Info to pass

Triggerstate

(last time you checked)

Recommend time to

wait before next poll

Push Triggers

 More Complex

 Create a PUT method taking TriggerInput

– Specifies returnUrl and what needs to be returned

– Returns Registration

– Uses a “triggerstore” you created

[HttpPut]
[Route("api/triggers/weatherwarning")]
public HttpResponseMessage WeatherWarningTrigger(string triggerId,

[FromBody] TriggerInput<string, WeatherWarning> triggerInput)
{

triggerStore.RegisterTrigger(triggerId, triggerInput);
return this.Request.PushTriggerRegistered(triggerInput.GetCallback());

}

Push Triggers

 Create your TriggerStore

– Created as singleton class

– Collects all incoming requests

– Contains code for monitoring events (e.g. FileSystemWatcher)

– Invokes callback when clients need to be warned

internal void RegisterTrigger(string triggerId,
TriggerInput<string, WeatherWarning> triggerInput)

{
var weatherWatcher = new WeatherAlarm();
weatherWatcher.WarningIssued += (s, ea) =>
{

Runtime runtime = Runtime.FromAppSettings();
ClientTriggerCallback<WeatherWarning> callback =

triggerInput.GetCallback();

callback.InvokeAsync(runtime, ea.WeatherWarning);
};
_store.Add(triggerId, weatherWatcher);

}

Triggers

 Your triggers show up in the API definition

 And they become available for your logic apps

Demo

Microsoft and Apple Training

Summary

 API Apps allow you to build and distribute API’s

 Metadata is exposed through Swagger

 API Client SDK’s can be generated

 Authentication can be done with social network

credentials or AAD

 Business flows can be created with Logic Apps

 Logic Apps consume API Apps

 API Apps + Logic Apps = Microservice Architecture

