
6/9/2015

1

Microsoft and Apple Training

.NET 2015 and ASP.NET 5
Peter Himschoot
peter@u2u.be

Agenda
 What and Why
 Understanding .NET 2015: .NET 4.6 versus .NET Core 5
 Supporting multiple runtimes
 Frameworks and Runtimes
 The new Roslyn Compiler

– New language features in C#
 Looking at ASP.NET 5

6/9/2015

2

What and Why
 Microsoft is becoming more

– Open (Source)
 Using open source, for example Docker
 Building open source, for example Core Foundation

– Cross-platform
 E.g. Office for iOS and OSX

 Next in line is open sourcing the .NET framework
– CLR, JIT, GC, Base libraries, …
– Bringing .NET Core to Linux and Mac OSX

http://www.dotnetfoundation.org/

https://github.com/dotnet/corefx

What is .NET Core 5
 Cross-platform version of .NET

– Runs on Windows, Linux and Mac
 Enables The Internet Of Things for .NET

– Runs on Raspberry Pi 2, MinnowBoard Max, Galileo, …
 Smaller, scenario-specialized
 Cloud (and server) optimized
 Delivered through NuGet packages (modular)

6/9/2015

3

.NET 4.6 versus .NET Core 5
 .NET 2015 – a collection of .NET releases

Supporting Multiple Runtimes
 .NET Core 5 can run on different runtimes

6/9/2015

4

ASP.NET 5
 ASP.NET 5 can run on .NET 4.6 or .NET Core 5

– Can run on any version of .NET Core, on the same machine
– Website A and Website B can run using different versions

 Running on .NET Core 5 means:
– Smaller footprint
– Side-by-side deployment with other versions of .NET Core
– Develop/Run on Windows, Mac or Linux

 Running on .NET 4.6 means:
– Highest level of compatibility
– Windows only

The Roslyn Compiler
 Open Source implementation of the C# compiler
 Compiler written in C#

– Compiles itself (“holy grail”)
 Comes with rich code analysis API

– Compiler becomes platform
 Intellisense, refactoring, intelligent rename, Go to definition

– Build your own “light-bulb”

https://github.com/dotnet/roslyn

6/9/2015

5

New C# Language Features
 The C# team added the features they wanted

– But did not have time for until now
 Mainly syntactic sugar

– Make C# more concise…

String Interning
 How many times have you written this kind of code?

 This kind of code is very prone to errors…
 String interning to the rescue

string.Format("{0} - {1}", Amount, Currency)

$"{Amount} ({Currency})"

6/9/2015

6

Handy nameof operator
 Returns string version of property, method, …

– Handy for exception handling, INotifyPropertyChanged
– Using strings is bad for maintenance

– Better:
throw new ArgumentNullException(paramName: nameof(currency));

throw new ArgumentNullException(paramName: "currency");

Readonly Automatic Properties
 Building immutable Value Objects (DDD)

– With readonly properties

 New automatic property syntax

private readonly decimal amount;
public decimal Amount
{
get { return amount; }

}

public string Currency { get; }

6/9/2015

7

Auto property initializers
 Initializing automatic properties

– Could only be done in constructors
 New auto property initialization syntax

– Assign value in property declaration – like fields
public Money Balance { get; set; } = new Money(0, "EUR");

Null-conditional operator
 Handling null references can be very verbose:

 Introducing the Null-conditional operator:

if (Name != null)
{
return Name.Length;

}
else
{
return 0;

}

return Name?.Length ?? 0;

if(PropertyChanged != null)
{
PropertyChanged.Invoke(this, ...

}

PropertyChanged?.Invoke(this, ...

6/9/2015

8

Expression-bodied functions
 Lambda functions are short-hand for delegates

 Expression bodied functions are the same for functions
(sender, e) => Write(e.PropertyName)

public int GetLengthOfName() => Name?.Length ?? 0;

Static using statements
 Calling static functions can become mundane…

 Now we can use a static using:

 No more need to prefix static methods, properties, …

Console.Write("> ");
var input = Console.ReadLine();

using static System.Console;
using static System.ConsoleColor;

Write("> ");
var input = ReadLine();
ForegroundColor = Yellow;

6/9/2015

9

Async exception handling
 Using async and await and exception handling is hard

– E.g. awaiter pattern
 Now C# 6 allows you to use await in the catch/finally

public async Task GetMoreInfoAsync(){ string s = null;try{ HttpClient client = new HttpClient();var result = await client.GetAsync("http://www.nobodythere.com");s = await result.Content.ReadAsStringAsync();}catch (ArgumentNullException ex){ s = await WriteToLog(ex.Message);}}

Exception Filters
 To catch exceptions that match some condition

– Part of VB.NET since the beginning…
catch (ArgumentNullException ex) when (ex.ParamName == "requestUri")

6/9/2015

10

Starting with C# 6
 Maybe install the Visual Studio extension

 The extension will make suggestions to use C# 6

What is ASP.NET 5.0?
 New, from the ground up

– New light-weight HTTP request pipeline
– Modular, pay-for-what-you-use
– Heavily relies on nuget packages

 Open-source, cross-platform
– GitHub: https://github.com/aspnet/home
– Windows, Mac, Linux

 Optimized for on premise, or the cloud
– Seamless transition
– Unified Web UI and API stack

 Self-host, or host in IIS
 Based on best practices

– Dependency injection

6/9/2015

11

The new ASP.NET 5 project structure
 Visual Studio 2015 solution:

– global.json
 Contains “sources”

– project.json
 Contains target frameworks
 Also has commands
 Tracks dependencies

– wwwroot
 Contains static files
 Ignored by compiler

Why use JSON files?
 Easier to merge in source control
 Open for all tooling/editors

– Editing project.json will update project without VS

6/9/2015

12

Demo
Microsoft and Apple Training

Visual Studio Artifacts
 ASP.NET now compiles to memory

– Faster
 Does not produce any assemblies on disk

– You can change this in project properties

6/9/2015

13

.NET Executing Environment (.DNX)
 Every ASP.NET project is a DNX project

– ASP.NET Application Hosting (package)
 ASP.NET applications are defined in Startup class:

– Replaces global.asax and web.config
public class Startup{ public Startup(IHostingEnvironment env) {}
// This method gets called by the runtime. // Use this method to add services to the container.public void ConfigureServices(IServiceCollection services){}
// Configure is called after ConfigureServices is called.public void Configure(IApplicationBuilder app, IHostingEnvironment env, ILoggerFactory loggerfactory){}}

The Startup method
 Uses Fluent API to configure your web application

public Startup(IHostingEnvironment env){ // Setup configuration sources.var configuration = new Configuration().AddJsonFile("config.json").AddJsonFile($"config.{env.EnvironmentName}.json", optional: true);
if (env.IsEnvironment("Development")){ // This reads the configuration keys from the secret store.configuration.AddUserSecrets();}configuration.AddEnvironmentVariables();Configuration = configuration;}

6/9/2015

14

Demo
Microsoft and Apple Training

Dependency Injection
 Singleton

– Created only once, re-used all the time

 Scoped
– Created if they don’t exist yet in current scope
– Normally a scope is created per request

 Transient
– Created each time they are requested

6/9/2015

15

