
Microsoft and Apple Training

API Apps for web, mobile and logic

apps

“microservices”

About Me…

 Michaël Van Wesemael

 Trainer @ U2U in

– Web Development (ASP.NET, MVC)

– Windows Phone, Windows Store apps

– Azure

 Contact me: michael@u2u.be

 Twitter PiekenPuil

 http://blogs.u2u.be/michael

 “Putting the punk back

into punctuality”

mailto:michael@u2u.be
http://blogs.u2u.be/michael

Agenda

 App Services & microservices

 What is an API app ?

 Creating an API app

 Exposing metadata with Swagger

 Deployment

 Creating an API Client

 Logic Apps

 Adding API Apps to logic apps

 Authentication

App Services

 Single Service combining
– Azure Web Apps

– Azure Mobile Apps

– Azure API apps

– Azure Logic apps

 Grouped in Resource Groups

 “MicroServices” : the microservice architectural style is an
approach to developing a single application as a suite of
small services, each running in its own process and
communicating with lightweight mechanisms (M.Fowler)

API Apps

 The API Apps Service provides a rich platform for

building, consuming and distributing APIs

 Choice of technology

– ASP.NET, Java, PHP, Node.js, Python

 Simple Access Control

 Easy consumption through SDK generation

 Integrates with SaaS applications (O365, Dropbox,

Twitter, Facebook,…) and Logic Apps

 Apps can be added or downloaded from marketplaces

 Auto-installation of dependencies

Creating an API Apps

 Create a brand new API app

 Or convert an existing one

Creating an API App

 2 files are needed for deploying to Azure:

DeploymentInfo

Definition how the app

will appear in Azure

API metadata

 Metadata is contained in apiapp.json
Name Description

Id Must be unique per namespace

Namespace Default is microsoft.com

Gateway Gateway-version. Gateways are used for a.o. authentication

Categories Category for marketplace

Copyright Copyright notice

… …
{

"$schema": "http://.../apiapp.json#",
"id": "U2UCoursesAPI",
"namespace": "microsoft.com",
"gateway": "2015-01-14",
"version": "1.0.0",
"title": "U2UCoursesAPI",
"summary": "",
"author": "",
"endpoints": {

"apiDefinition": "/swagger/docs/v1",
"status": null

}
}

Demo

Microsoft and Apple Training

Deploying you API app

 Just call “Publish” on your project

Deploying your API App

 Check your app in the portal

Demo

Microsoft and Apple Training

Swag apps with Swagger

 API Apps can use Swagger for testing and describing

your api

– http://swagger.io/

 Swagger-configuration done by

App_Start/SwaggerConfig

 Many settings are possible through this configuration

– E.g. : allow Swagger Testing UI by uncommenting

EnableSwaggerUI

– Add testing-url to your app (/swagger)

http://swagger.io/

Swag apps with Swagger

Demo

Microsoft and Apple Training

Creating an API Client

 Call “Add Azure API Client” from within your project

 Client Code is generated based on Swagger metadata

Creating an API Client

 Adds Several files to your client application based on

Swagger-exposed metadata

 After that, coding is easy…
var client = new U2UCoursesAPI();

var courses = client.Courses.GetCourses();
foreach (var item in courses)
{

Console.WriteLine(item.CourseCode);
}

Creating an API Client

 Swagger CodeGen allows you to create Clients SDK in

different languages

 API Apps can be clients of other API Apps (fits in the

Microservice idea)

Demo

Microsoft and Apple Training

Add Authentication

 API Apps have accessibility settings

– Public (anonymous) - Anyone can call the API app

– Public (authenticated) - Only authenticated users are allowed

to call the API app from outside the resource group

– Internal - Only other API apps in the same resource group are

allowed to call the API app

 All requests go through a Gateway defined on

resourcegroup! Gateway chooses identityprovider. Same

for all API’s in resourcegroup

Add Authentication

 Add authentication on API App properties

Add Authentication

 Specify IdentityProvider on Gateway-properties

Add Authentication

 Authentication depends on the chosen identity provider

– You need to register an app in facebook, twitter, AAD,…

– This gives you an App ID and App secret

– Needed on gateway

Demo

Microsoft and Apple Training

Add Authentication - AAD

 Add an application to AAD (“Application that my

organization is developing”)

Add Authentication

 Copy the URL’s from your app’s blade into AAD.

 Copy the ApplicationID to your blade

Add authentication

 Access your api app HTTP 403 Forbidden

 Go to the login-url of the gateway

– http://gatewayurl/login/providername

– Providername :

 aad

 google

 facebook

 twitter

 microsoftaccount

 Login -> Get the x-zumo-auth header from the response

http://gatewayurl/login/providername

Add authentication

 Use the x-zumo-auth header when calling your api

 API Client will have easy way of doing this. (not yet in

preview)

Demo

Microsoft and Apple Training

Logic Apps

 Platform as a service (PaaS)

 Allows to automate business processes by visually

designing workflows in the browser

 Made by combining API apps and connectors

 Define when your process needs to run with triggers

 Use Biztalk functionality for more complex workflows

Creating Logic Apps

 Creating Connectors

– Connectors are API apps, available in the marketplace

Creating Logic Apps

 Create Your Logic App in the browser

Creating logic apps

 Add triggers and actions

 E.g. : start the flow when a tweet about U2UTraining is

detected, or start every hour, or …

Creating logic apps

 Connect API apps together for creating a functional

whole

 E.g. : Every hour check for tweets and mail them

Demo

Microsoft and Apple Training

Using your API Apps

 Your own API Apps can be used, like the others.

 Just add them in your Logic App

 Additional Coding is needed if you want to use them as

triggers in Logic apps

API App triggers

 Comparable to events

 Allows clients of API apps to respond

 Exposes the API app to Logic Apps

 Two types of triggers

– Poll Triggers : Client polls the API app for notification of an event

having been fired

– Push Triggers : Client is notified by the API app when an event

fires

Poll Triggers

 Add a GET method that will be called regularly
[HttpGet]
[Route("api/triggers/weatherchanged")]
public HttpResponseMessage WeatherChangedTrigger(string triggerstate,

string location)
{

//Check if weather changed since timestamp in triggerState for location
var hasChanged = true;
if (hasChanged)
{

return Request.EventTriggered(new { info = "Sunny" },
DateTime.UtcNow.ToString(), TimeSpan.FromHours(2));
}
return Request.EventWaitPoll(TimeSpan.FromHours(1),
DateTime.UtcNow.ToString());

}

Info to pass

Triggerstate

(last time you checked)

Recommend time to

wait before next poll

Push Triggers

 More Complex

 Create a PUT method taking TriggerInput

– Specifies returnUrl and what needs to be returned

– Returns Registration

– Uses a “triggerstore” you created

[HttpPut]
[Route("api/triggers/weatherwarning")]
public HttpResponseMessage WeatherWarningTrigger(string triggerId,

[FromBody] TriggerInput<string, WeatherWarning> triggerInput)
{

triggerStore.RegisterTrigger(triggerId, triggerInput);
return this.Request.PushTriggerRegistered(triggerInput.GetCallback());

}

Push Triggers

 Create your TriggerStore

– Created as singleton class

– Collects all incoming requests

– Contains code for monitoring events (e.g. FileSystemWatcher)

– Invokes callback when clients need to be warned

internal void RegisterTrigger(string triggerId,
TriggerInput<string, WeatherWarning> triggerInput)

{
var weatherWatcher = new WeatherAlarm();
weatherWatcher.WarningIssued += (s, ea) =>
{

Runtime runtime = Runtime.FromAppSettings();
ClientTriggerCallback<WeatherWarning> callback =

triggerInput.GetCallback();

callback.InvokeAsync(runtime, ea.WeatherWarning);
};
_store.Add(triggerId, weatherWatcher);

}

Triggers

 Your triggers show up in the API definition

 And they become available for your logic apps

Demo

Microsoft and Apple Training

Summary

 API Apps allow you to build and distribute API’s

 Metadata is exposed through Swagger

 API Client SDK’s can be generated

 Authentication can be done with social network

credentials or AAD

 Business flows can be created with Logic Apps

 Logic Apps consume API Apps

 API Apps + Logic Apps = Microservice Architecture

