
13/10/14	

1	

Microsoft and Apple Training

Apple’s new Swift language

Peter Himschoot
peter@u2u.be

Agenda

§  Developing for iOS overview
–  Xcode, Objective-C, Swift, Development life cycle

§  UI development
–  Interface Builder
–  Storyboard and segues
–  Universal layout

§  Swift
–  Features

§  Some APIs
–  Core Data, Services, Camera
–  MapKit Points of Interest and Directions
–  TouchID

13/10/14	

2	

Developing for iOS

§  Only one active application
–  No real multi-tasking
–  Applications freeze when no longer active
–  Background processing possible

§  With limits

§  Only one window
§  Limited Access

–  Sandbox - store documents, preferences, data
–  Networking limitations, no low-level access
–  No root access

iOS specifics

§  Limited Response Time
§  Snappy - fast - load fast, close fast
§  In case of incoming call - 5 seconds max

§  Limited Screen Size
§  Limited System Resources

§  1 Gb RAM ~half for application
§  No swapping

§  No Garbage collection
§  Automatic Reference Counting

§  Battery consumption
–  “Battery shaming”

13/10/14	

3	

Important iOS frameworks

§  Foundation
–  Base classes such as NSString

§  UIKit
–  Building UI’s

§  Core Data
–  Relational data

§  AVFoundation
–  Audio, Video

§  CloudKit
§  CoreLocation
§  MapKit

–  Maps, directions

What is Xcode

§  Xcode is Apple’s core development environment
§  Code Editors

–  Both for Objective-C and Swift

§  Source Control
§  Debugging
§  Interface Builder

–  UI

§  Instruments
–  Profiling

13/10/14	

4	

Programming Languages

§  Objective-C
–  Object-Oriented adaptation of C, based on SmallTalk
–  Old, from the 80’s
–  Verbose syntax
–  Supports dynamic programming
–  Apple added a lot of improvements, “Modern Objective-C”

§  Swift
–  Modern Object-Oriented programming language
–  Similar to Java and C#
–  Interoperable with Objective-C
–  Brand new, announced in 2014

Demo

Microsoft and Apple Training

Building Hello world with Xcode
and Interface Builder

13/10/14	

5	

UI Development

§  Interface Builder
§  Segues
§  M-V-C
§  Auto layout

Interface Builder

§  Interface builder is the primary designer in XCode
–  Used to be separate tool

§  You use it to build your views
–  And with a storyboard your navigation between views

§  Interface builder uses .xib (also know as .nib) files
–  NextStep Interface Builder

§  And also uses Storyboard files
–  Think of this as collection of .xib files
–  With navigation through segues

13/10/14	

6	

Segues

§  Declarative navigation
–  Requires navigation controller

§  Pronounced “Segway”
–  Nothing to do with ------------>

Storyboard example

13/10/14	

7	

Cocoa MVC design pattern

§  source: Cocoa Design Patterns

object (at some level of the composite structure) to change its behavior or appearance. The model object,
in turn, notifies all objects who have registered as observers when its state changes; if the observer is a view
object, it may update its appearance accordingly.

Figure 4-6 Traditional version of MVC as a compound pattern

Strategy

Controller

Composite

View

Observer

Model

The Cocoa version of MVC as a compound pattern has some similarities to the traditional version, and in fact
it is quite possible to construct a working application based on the diagram in Figure 4-‐6. By using the
bindings technology, you can easily create a Cocoa MVC application whose views directly observe model
objects to receive notifications of state changes. However, there is a theoretical problem with this design.
View objects andmodel objects should be themost reusable objects in an application. View objects represent
the "look and feel" of an operating systemand the applications that system supports; consistency in appearance
and behavior is essential, and that requires highly reusable objects. Model objects by definition encapsulate
the data associated with a problem domain and perform operations on that data. Design-‐wise, it's best to
keep model and view objects separate from each other, because that enhances their reusability.

Inmost Cocoa applications, notifications of state changes inmodel objects are communicated to view objects
through controller objects. Figure 4-‐7 shows this different configuration, which appearsmuch cleaner despite
the involvement of two more basic design patterns.

Figure 4-7 Cocoa version of MVC as a compound design pattern

Mediator

Strategy

Controller

ModelView
Command

Composite

Observer

The controller object in this compound design pattern incorporates the Mediator pattern as well as the
Strategy pattern; it mediates the flow of data between model and view objects in both directions. Changes
inmodel state are communicated to view objects through the controller objects of an application. In addition,
view objects incorporate the Commandpattern through their implementation of the target-‐actionmechanism.

164 The Model-‐View-‐Controller Design Pattern
2010-12-13 | © 2010 Apple Inc. All Rights Reserved.

CHAPTER 4

Cocoa Design Patterns

Demo

Microsoft and Apple Training

Navigation with storyboards
and segues

13/10/14	

8	

Auto Layout

§  Constraint based layout system
§  Designing with intent

–  “The two buttons should have the same width”
–  “These textboxes should be aligned at the left side”
–  “This textbox should be to the right of its label”

§  Define the constraints
–  The system does the layout

“Prepare for the future”

Unified Storyboard and Size Class

Regular Compact

Regular

Compact

iPad
Portrait
Landscape

iPhone
Portrait

iPhone
Landscape

?

13/10/14	

9	

Interface Builder and Size class

§  Interface Builder now allows you to select the size class
–  wAny – hAny means base layout

–  Install and uninstall constraints

Demo

Microsoft and Apple Training

Building a weather app
with Xcode 6, a universal storyboard

and size classes

13/10/14	

10	

Swift – some features

§  Swift vs Objective-C
§  Tuples and Enumerations
§  Optionals (!)
§  Functions
§  Closures

Swift, Apple’s new language

§  Modern Object Oriented programming language
§  Full interoperability with Objective-C
§  Type safe
§  Type inference
§  No nil valued variables

–  Optional types
§  Functions are first class citizens

–  Closures

§  Extensions

13/10/14	

11	

Programming languages

§  Objective-C

#import <Foundation/Foundation.h> !
@import UIKit; !
!
@interface Rectangle : NSObject!
!
@property (assign, nonatomic) CGPoint * topleft; !
@property (assign, nonatomic) CGSize * size; !
!
- (Rectangle*) overlap: (Rectangle*) other; !
@end

#import "Rectangle.h" !
!
@implementation Rectangle !
!
- (Rectangle *)overlap:(Rectangle *)other !
{ !
 return nil; !
} !
!
@end

§  Swift

import Foundation !
import UIKit!
!
class Rectangle { !
 var topleft : CGRect? !
 var size : CGSize? !
 !
 func overlap(other: Rectangle) !
 -> Rectangle? !
 { !
 return nil!
 } !
}

Rectangle.h

Rectangle.m

Rectangle.swift

Swift and Objective-C together

§  Swift and Objective-C can be used in the same project
–  Uses bridging headers, normally created by Xcode

13/10/14	

12	

Tuples

§  Built in type

§  Can be named

§  Accessing members

let notFound = (404, "Not Found") !
let point = (10, 20, 30)

let named = (code: 404, text: "Not Found”) !
typealias httpError = (code: Int, text: String) !
var error : httpError = notFound!

println("Error code \(notFound.0) means \(notFound.1)") !
println(error.code) !
!
let (code, msg) = notFound!
println("Error code \(code) means \(msg)”) !
!
let (_, msg) = notFound // ignore code!
!

Swapping variables

§  Swap the value of two variables ?

§  No need for a temporary variable

var a = 5 !
var b = 6 !
(a,b) = (b,a) !

13/10/14	

13	

Enumerations

§  Create a type-safe group of values

§  Shorter

§  Unlike most other languages not linked to integer type

enum Direction { !
 case North !
 case East !
 case South !
 case West !
}

enum Direction { !
 case North, East, South, West !
}

Associated values

§  Representing bar codes

§  Using enumeration type

enum Barcode { !
 case UPCA(Int, Int, Int,Int) !
 case QRCode(String) !
}

var productBarcode = Barcode.UPCA(8, 85909, 51226, 3)

13/10/14	

14	

Optionals

§  Normal variables cannot be nil

§  Optionals are variables that may or may not have a value

var x : String = nil // compiler error

var x : String? = …

Unwrapping optionals

§  To use the value of an optional we need to unwrap it

§  The test and unwrap can be done as a single statement
–  Optional binding

var i : Int? !
!
if i != nil { // test!
 let _i = i! // unwrap!
 println(_i) !
} !

if let _i = i { !
 println(_i) !
}

13/10/14	

15	

Optional chaining

§  Consider following classes

§  You want to get a department’s manager’s city

§  Would you like to write this?

class Address { !
 var street: String? !
 var city: String? !
}

class Employee { !
 var name: String? !
 var address: Address? !
}

class Department { !
 var name: String? !
 var manager: Employee? !
}

var d = Department()

if let _manager = d.manager { !
 if let _address = _manager.address { !
 if let _city = _address.city { !
 println(_city.uppercaseString) !
 } !
 } !
}

Optional Chaining

§  Optional chaining allows you to write it like this

§  Optional chaining follows the track of values
–  Also works with methods

if let _city = d.manager?.address?.city?.uppercaseString { !
 println(_city) !
}

d.manager?.address?.city?.uppercaseString

nil

nil

nil

"Melle"

13/10/14	

16	

Functions

§  From Apple documentation

§  Declaring functions
–  Named functions

–  Closures

Functions are self-contained chunks of code that perform a specific
task. You give a function a name that identifies what it does, and this
name is used to “call” the function to perform its task when needed

func globalFunc(a: Int, b: Int) -> Int { !
 return a+b!
}

Function variables

§  Functions are types
§  Can be assigned to variables and properties

var f = globalFunc!
f(1,2) !
!
f = obj.memberFunc!
f(1,2) !

var f2 : (Int,Int)->Int!
f2 = globalFunc!
f2 = obj.memberFunc!

13/10/14	

17	

Functions are first class citizens

§  Functions can return other functions

§  Storing and calling the result

func greeterFunc(lang: String) -> (()->String) { !
!
 func dutch() -> String { return "Goede morgen" } !
 func french() -> String { return "Bonjour" } !
 !
 if lang == "nl" { !
 return dutch!
 } else { !
 return french!
 } !
} !

let greeter = greeterFunc("nl") !
greeter()

External Parameter names

§  Consider following function call

§  Question: what does the boolean mean?

§  Same function call:

§  Same question: what does the boolean mean?

vehicleFromStorage(false)

vehicleFromStorage(ignoreCase: false)

13/10/14	

18	

External Parameter names

§  Apple recommendation

Consider using external parameter names
whenever the purpose of a function’s

arguments would be unclear to someone
reading your code for the first time

You!

External Parameter names

§  Declaring the function

§  How do you require the argument name?
–  Use external parameter name before internal parameter name

§  Shorter, same internal as external parameter name

func vehicleFromStorage(ignoreCase: Bool) -> Vehicle { !
 … !
}

func vehicleFromStorage(ignoreCase ic: Bool) -> Vehicle { !
 … !
} !

func vehicleFromStorage(#ignoreCase: Bool) -> Vehicle { !
 … !
}

13/10/14	

19	

No external parameters names

§  By default instance methods have external names
–  All but first parameter

§  Needs to be called like this:

§  You can turn this off by using _ as parameter name

§  Now use:

func fuel(fuelType: String, liters: Int)

v.fuel("Gas", liters: 50)

func fuel(fuelType: String, _ liters: Int)

v.fuel("Gas", 50)

Closures – Anonymous functions

§  “Instruction” objects (aka Blocks / Lambda functions)
§  Let’s say we have an array of numbers

§  We want to calculate the average of a function

let numbers = [1, 2, 3, 4, 5]

func square(a: Int) -> Int { !
 return a*a; !
} !
!
func averageOfSquares(#nrs: [Int]) -> Double { !
 var sum = 0; !
 for nr in nrs { !
 sum += square(nr) !
 } !
 return Double(sum) / Double(nrs.count) !
}

13/10/14	

20	

Closures

§  After a while we need the average of another function
–  Should we Copy – Paste ?

§  No, we use a closure to pass the function

§  The argument f is a Function Type

func averageOfFunction(#nrs : [Int], f: (Int -> Int)) !
 -> Double { !
 var sum = 0; !
 for nr in nrs { !
 sum += f(nr) !
 } !
 return Double(sum) / Double(nrs.count) !
} !

Passing closures to functions

§  Passing a compatible function

§  Verbose “closure expressions”

§  Shorter, using type inference

§  Even shorter, using default parameter name $0

averageOfFunction(nrs: numbers, f: square)

averageOfFunction(nrs: numbers, !
 f: { (a: Int) -> Int in return a*a })

averageOfFunction(nrs: numbers, f: { a in a*a })

averageOfFunction(nrs: numbers, f: { $0 * $0 })

13/10/14	

21	

Trailing closure syntax

§  Swift closures have a convenient syntax to pass closures
–  When the last argument is a closure

§  This is especially convenient with completion handlers!

averageOfFunction(nrs: numbers) { $0*$0 }

let snapShotter = MKMapSnapshotter(options:options) !
snapShotter.startWithCompletionHandler!
{ !
 [unowned self] snapshot, error in!
 if let _snapshot = snapshot { !
 … !
 } !
}

Some important APIs

§  Core data
§  AFNetworking
§  Camera
§  UIAlertController
§  MapKit

–  Points of interest
–  Directions

§  TouchID

13/10/14	

22	

What is Core Data?

§  Core Data is an Object Graph
–  That can persist to a database

§  Core Data manages the Object Graph
–  Persistence is secondary (but still very important)

§  Object Graph
–  Stored as .xcdatamodeld file in Xcode
–  Edited in Xcode

Recipe Ingredient

Advantages of Core Data

§  Build a data model visually
–  define entities

§  define attributes – relationships – fetched properties

§  Forget about persistence
§  Uses SQLite as backing store

–  By default, other storage mechanisms are possible

13/10/14	

23	

Networking

§  iOS has a rich open source community
–  Many have built extensions to use REST services
–  AFNetworking

NSURLRequest *request = [NSURLRequest requestWithURL:url]; !
!
AFJSONRequestOperation *operation = !
 [AFJSONRequestOperation JSONRequestOperationWithRequest:request!
 success:^(NSURLRequest *request, NSHTTPURLResponse *response, id JSON) !
 { !
 self.weather = (NSDictionary *)JSON; !
 self.title = @"JSON Retrieved"; !
 [self.tableView reloadData]; !
 } !
 failure:^(NSURLRequest *request, NSHTTPURLResponse *response, NSError *error, id JSON) !
 { !
 … !
 }]; !
!
 [operation start];

Camera
- (IBAction)takePictureTapped:(id)sender { !
!
 self.imagePicker = [[UIImagePickerController alloc] init]; !
 self.imagePicker.sourceType = UIImagePickerControllerSourceTypeCamera; !
 self.imagePicker.mediaTypes = [UIImagePickerController !
 availableMediaTypesForSourceType:UIImagePickerControllerSourceTypeCamera]; !
 self.imagePicker.allowsEditing = YES; !
 self.imagePicker.delegate = self; !
!
 [self presentViewController:self.imagePicker animated:YES completion:nil]; !
} !
!
- (void)imagePickerController:(UIImagePickerController *)picker !
didFinishPickingMediaWithInfo:(NSDictionary *)info { !
!
 // First dismiss the image picker!
 [self.imagePicker dismissViewControllerAnimated:YES completion:^ { !
!
 UIImage * originalImage = info[UIImagePickerControllerOriginalImage]; !
 UIImage * editedImage = info[UIImagePickerControllerEditedImage]; !
 UIImage * pillImage = originalImage ? originalImage : editedImage; !
 UIImage * pillThumbImage = [pillImage thumbnailImage:100 !
 transparentBorder: 0 !
 cornerRadius:10 !
 interpolationQuality:kCGInterpolationDefault]; !
 self.pillImageView.image = pillThumbImage; !
 }]; !
}

13/10/14	

24	

From A to B using MapKit

§  Use MapView to show map
§  Use Points of interest

–  To find destination

§  Use Directions
–  To find directions from and to airport

§  Add MKAnnotations
–  To put route on map

§  Step by step instructions

Swift

MapKit Points of Interest

var searchRequest = MKLocalSearchRequest() !
searchRequest.naturalLanguageQuery = searchBar.text!
var localSearch = MKLocalSearch(request: searchRequest) !
localSearch.startWithCompletionHandler() !
 { response, error in!
 if let _response = response !
 { !
 … !
 } !
 }	

13/10/14	

25	

Swift

MapKit Directions

var directionsRequest = MKDirectionsRequest() !
directionsRequest.setSource(from) !
directionsRequest.setDestination(to) !
directionsRequest.transportType =
MKDirectionsTransportType.Automobile!
 !
var directions = MKDirections(request: directionsRequest) !
directions.calculateDirectionsWithCompletionHandler!
 { !
 (response: MKDirectionsResponse?, error: NSError?) in!
 if let _count = response?.routes?.count !
 { !
 … !
 } !
 } !
	

Demo

Microsoft and Apple Training

Using Core Data

